utb-Shoputb-Shop

0 Artikel zum Warenkorb

Sie haben keine Artikel im Warenkorb.

Gesamtsumme 0,00 €
Zwischensumme 0,00 €

BWL-Crash-Kurs Statistik

Aktiv mit R

von Wolf, Hans Peter; Naeve, Peter; Tiemann, Veith Fach: Betriebswirtschaftslehre; Mathematik/ Statistik/ Informatik; Volkswirtschaftslehre; Reihe: BWL Crash Kurs

"Alles Leben ist Problemlösen!" summiert Karl R. Popper wunderschön und prägnant, und dazu benötigen wir Statistik. Denn Statistik beschäftigt sich mit der Analyse von Problemen, der Modellierung von Eigenschaften und Zusammenhängen und dem Urteilen über Vermutungen. Dieses Lehrbuch bietet seinen Lesern Instrumente, um diesen Weg sicher gehen zu können, konkret aus den Bereichen: Datenanalyse, Modellbildung, Wahrscheinlichkeitsrechnung, Punkt- und Intervallschätzung, Testen und Regression. Das Ziel "Problemlösen" im Visier wurden die Konzepte und Gedankengänge mit Rechnerbeispielen verzahnt, sodass der Leser Bedeutungen einzelner Details erfahren kann - formale Theorie wird dagegen auf kleiner Flamme gekocht. "Erfahren" ist Ernst gemeint: Die eingesetzte Technik mit der Software R macht es möglich, selbst statistisch aktiv zu werden.
Erweitern/ reduzieren Zusatzinformationen

Verfügbare Formate

  • Online-Zugang
    6,99 €
    * (nur digital)
AGB / Widerrufsbelehrung

* Online-Zugang inkl. 19% Mehrwertsteuer Kostenlose Lieferung innerhalb Deutschlands ab einem Bestellwert von 10,- €. Details

Details
ISBN 9783838527802
UTB-Titelnummer E2780
Auflagennr. 1. Aufl.
Erscheinungsjahr 2006
Erscheinungsdatum 18.04.2006
Einband Nein
Formate UTB M (15 x 21,5 cm)
Originalverlag UVK
Umfang 382 S.
Zusatzmaterial
Inhalt
Vorwort 11
1 Datenanalyse? Daten? Statistik? 13
1.1 Was f ¨urDatengibt es? 17
1.2 WokommenDatenher? 20
Zusammenfassung 23
Aufgaben 23
2 Univariate, exploratorische Analyse 25
2.1 H¨aufigkeitstabellenundderenDarstellung 26
2.2 Auswertung der Urliste: Lage und Variabilit¨at 38
2.2.1 ZurLageeinesDatensatzes 39
2.2.2 Zur Variabilit¨ateinesDatensatzes 46
2.3 Die empirischeVerteilungsfunktion 52
2.4 BesondereStruktureneinerVerteilung 55
2.5 Konzentrationsmessung – LORENZ und GINI 61
2.6 Fallstudie –das6 aus49Lotto 65
Zusammenfassung 73
Aufgaben 74
3 Bivariate, exploratorische Analyse 77
3.1 KorrelationvonMerkmalen 78
3.2 DerVergleichzweierMerkmale 87
Zusammenfassung 89
Aufgaben 89
4 Auf zur Modellierung 91
4.1 Konzepte amBeispielderBinomialverteilung 92
4.1.1 Bernoulli-Experimente und Zufallsvariablen 92
4.1.2 Wahrscheinlichkeitsfunktion 96
4.1.3 Binomialverteilung 100
4.1.4 Verteilungsfunktion 102
4.1.5 Erwartungswerte 105
4.1.6 ErwartungswertderBinomialverteilung 108
4.1.7 Additivit¨atseigenschaft des Erwartungswertes 109
4.1.8 Binomialverteilung und Variabilit¨at 111
4.1.9 VerteilungvonMittelwerten 114
4.2 VerschiedenediskreteVerteilungen 117
4.2.1 DiehypergeometrischeVerteilung 117
4.2.2 VonderBinomial- zurPoisson-Verteilung 123
4.3 StetigeModellwelt 127
4.3.1 StetigeGleichverteilung 128
4.3.2 ¨UberSummenzurNormalverteilung 131
4.3.3 Wartezeitverteilungen 141
4.3.4 Vongeometrischzuexponential 143
4.3.5 VonPoissonzuExponential 145
4.3.6 Summe exponentialverteilter Zufallsvariablen 147
4.3.7 GLIVENKO und CANTELLI 148
Zusammenfassung 149
Aufgaben 150
5 Casino-Statistik 155
5.1 W¨urfelfragen. 156
5.2 Wahrscheinlichkeit—was istdas? 157
5.3 RechnenmitWahrscheinlichkeiten 159
5.4 AxiomederWahrscheinlichkeitsrechnung 162
5.5 ZusammengesetzteEreignisse 163
5.6 Kombinatorik f ¨ ur das Gleichm¨oglichkeitsmodell 167
5.7 WahrscheinlichkeitenundBedingungen 168
5.8 Abh¨angigkeit und Unabh¨angigkeit 172
5.9 TotaleWahrscheinlichkeit 175
5.10 LernenausZusatzinformationen 178
5.11 ZusammengesetzteZufallsexperimente 180
Zusammenfassung 184
Aufgaben 185
6 Parametersch¨atzungen 189
6.1 Datengrundlage 190
6.2 Zur IdentifikationdesModelltyps 194
6.3 Stichproben- und Sch¨atzfunktionen. 199
6.3.1 Eigenschaften von Sch¨atzfunktionen 199
6.3.2 Die Stichprobenfunktionen X und S2 201
6.3.3 Experimente zur Untersuchung von Stichprobenfunktionen
. 206
6.4 Zur Konstruktion von Sch¨atzfunktionen 209
6.4.1 Parametersch¨atzung nach der Methode der Momente 209
6.4.2 Parametersch¨atzung nach der ML-Methode 213
6.4.3 Fragen an Sch¨atzfunktionen 220
6.5 CheckdesgefundenenModells 224
6.5.1 Modellcheck 224
6.5.2 Beispiel:Unfalldaten 227
Zusammenfassung 230
Aufgaben 231
7 Konfidenzintervalle 235
7.1 Konfidenzintervall f ¨urdenMedian 237
7.2 WaskostetderWunsch? 238
7.2.1 Kann es nicht noch etwas vertrauensw¨ urdiger sein? 239
7.2.2 Kann es nicht etwas k¨urzer sein? 239
7.2.3 Welches k zu vorgegebenem Konfidenzniveau ?? 240
7.3 Konstruktionsprinzip f ¨urKonfidenzintervalle 241
7.4 Konfidenzintervall f ¨ ur einen Anteil p 242
7.5 FragenanKonfidenzintervalle 245
7.6 Konfidenzintervalle f ¨urdieNormalverteilung 248
7.7 Anwendung:Raucherrisiken 250
7.8 Caveat–Mahnung 251
Zusammenfassung 252
Aufgaben 253
8 Statistik und BAYES 255
8.1 EinProbleminklassischer Sicht 255
8.1.1 Euro keine Zufallsw¨ahrung? 255
8.1.2 Zutreffendodernicht? 1.Versuch 256
8.1.3 Zutreffendodernicht: 2.Versuch 259
8.1.4 Welchesp? 260
8.1.5 EinModell 260
8.1.6 Zwei L¨osungsvorschl¨age f ¨ ur das Sch¨atzproblem 261
8.1.7 Daspausdenp’s 264
8.2 BAYESundderEuro 265
8.2.1 Sammlung und Typisierung von Informationen 265
8.2.2 Beschreibung durchWahrscheinlichkeitsverteilungen 266
8.2.3 Perasperaadastra 268
8.2.4 EineRechtfertigung? 269
8.2.5 Ein Bayesscher Sch¨atzer 270
8.2.6 Uniformprior 270
8.2.7 Glaubw¨urdiger 271
8.3 Prior –Sample–Posterior 271
8.3.1 BetaalsPrior 271
8.3.2 Gutoder schlecht? 273
8.3.3 Parameterfortschreibung 273
8.3.4 DerEuroundseinePrior 273
8.3.5 ?a?ta ?e? 274
8.3.6 Playit again, Sam! 275
8.4 Beta-Verteilung 276
8.4.1 Dichte 276
8.4.2 Portr¨at 276
8.4.3 Tryyourself 276
8.4.4 Momente 277
8.5 Eshilft auchimWeltall 277
8.5.1 ¨ArgermitAriane 277
8.5.2 Noch einmal Richtung BAYES 278
8.5.3 Truncateduniformprior 279
8.5.4 AnwendbarkeitdesBayesschenAnsatzes 280
Zusammenfassung 281
Aufgaben 281
9 Testen 283
9.1 KochenundTesten 283
9.1.1 DasProblem:Zwiebelstatistik. 283
9.1.2 Datenbeschaffung 284
9.1.3 Datensichtungund-reduktion 284
9.1.4 Vermutung 285
9.1.5 IdeeeinesTests 286
9.2 DerAufbaueinesTests 289
9.2.1 Hypothesen 289
9.2.2 EntscheidungenundFehler 290
9.2.3 Teststatistik 291
9.2.4 Entscheidungsregel 291
9.2.5 Allgemeiner Fahrplan eines Tests mit Demonstration 293
9.2.6 BinomialtestmitR 294
9.2.7 Die G¨utefunktioneinesTests 295
9.3 Der ?2-Test:EinvielseitigerGeselle 297
9.3.1 IstLottofair–passtdieGleichverteilung? 297
9.3.2 Der ?2-Anpassungstest 300
9.3.3 Opfer und T¨ater – der ?2-Unabh¨angigkeitstest 302
9.4 EinekleineTestgalerie 303
9.4.1 Kolmogorov-Smirnov-Test 304
9.4.2 Normalverteilung: Test auf µ bei bekanntem s 305
9.4.3 Normalverteilung: Test auf µ bei unbekanntem s 306
9.4.4 Test aufGleichheitderMittelwerte 307
9.4.5 Vorzeichentest imEinstichprobenfall 309
9.4.6 Vorzeichentest imZweistichprobenfall 310
9.4.7 Wilcoxon-Test f ¨urverbundeneStichproben 312
Zusammenfassung 313
Aufgaben 314
10 Regressionsanalyse 317
10.1 Eine Reise f ¨ ur den ¨Uberblick 318
10.2 Das lineareRegressionsmodell 322
10.3 Modell-Sch¨atzungund-Check 323
10.3.1 DieMethodederkleinstenQuadrate 323
10.3.2 EinAnwendungsbeispiel 325
10.3.3 Residualanalyse 327
10.4 Modell-Interpretation 331
10.4.1 DasBestimmtheitsmaß 331
10.4.2 Konfidenzintervalle f ¨ ur Achsenabschnitt und Steigung 335
10.4.3 E(Y|x0) und Prognose von Y|x0 337
10.4.4 TestundModellvergleich 337
10.5 Ausblick 341
10.5.1 Mehrere erkl¨arendeVariablen 341
10.5.2 Nicht lineare Zusammenh¨ange 344
10.5.3 Variablentransformationen 346
10.5.4 Polynome und lokale Gl¨atter 347
Zusammenfassung 349
Aufgaben 349
11 R-Einf ¨ uhrung 353
11.1 Hintergrund, Installation und erste Schritte mit R 353
11.2 DateneinlesenundStatistikenberechnen 355
11.3 Graphikenerstellen 357
11.4 RalsRechnenmaschine 359
11.5 BequemesArbeitenmitdiesemBuchinR 363
11.6 StatistischeR-Idioms 365
11.7 WeitereInfos 369
Glossar 371
Literatur 375
Index 377
Autoreninfo

Tiemann, Veith

Prof. Dr. Veith Tiemann lehrt an der EBC Hochschule Hamburg.

Wolf, Hans Peter

Prof. Dr. Hans-Peter Wolf lehrt computergestützte Methoden an der Fakultät für Wirtschaftswissenschaften der Universität Bielefeld.
Leserbewertungen

Bewertungen

netter Versuch

Bewertung

Kundenmeinung von Marten

Geködert hat mich das Buch mit seinem Titel. Ich hatte gehofft, dass hier wirklich intensiv statistische Beispielaufgaben mit R gelöst bzw. bearbeitet werden. Um tatsächlich die Aufgabenstellungen praktisch am Rechner nachstellen zu können, müsste jedoch in irgendeiner Form die Datensätze zum Download angeboten werden, sodass man selber ein wenig damit spielen kann. Die drei Sterne Bewertung ist daher Ausdruck meiner Enttäuschung, wie wenig der Leser zum "Selbermachen" animiert wird.

Ansonsten ist das Buch völlig in Ordnung und als Einstieg in die Statistik geeignet. Es ist gut strukturiert und interessant bis amüsant geschrieben.

1 Artikel

Bewerten Sie den Titel "BWL-Crash-Kurs Statistik"

 
1 Stern
2 Sterne
3 Sterne
4 Sterne
5 Sterne
Bewertung
Produktfragen

Fragen zu BWL-Crash-Kurs Statistik

Es wurden bis jetzt noch keine Fragen gestellt.

Stellen Sie eine Frage

BWL-Crash-Kurs Statistik
 
  Lade...